On the evaluation of a certain class of Feynman diagrams in x - space : Sunrise - type topologies at any loop order
نویسندگان
چکیده
We review recently developed new powerful techniques to compute a class of Feynman diagrams at any loop order, known as sunrise-type diagrams. These sunrise-type topolo-gies have many important applications in many different fields of physics and we believe it to be timely to discuss their evaluation from a unified point of view. The method is based on the analysis of the diagrams directly in configuration space which, in the case of the sunrise-type diagrams and diagrams related to them, leads to enormous simplifications as compared to the traditional evaluation of loops in momentum space. We present explicit formulae for their analytical evaluation for arbitrary mass configurations and arbitrary dimensions at any loop order. We discuss several limiting cases of their kinematical regimes which are e.g. relevant for applications in HQET and NRQCD. We completely solve the problem of renormalization using simple formulae for the counterterms within dimensional regularization. An important application is the computation of the multi-particle phase space in D-dimensional space-time which we discuss. We present some examples of their numerical evaluation in the general case of D-dimensional space-time as well as in integer dimensions D = D 0 for different values of dimensions including the most important practical cases D 0 = 2, 3, 4. Substantial simplifications occur for odd integer space-time dimensions where the final results can be expressed in closed form through elementary 1 functions. We discuss the use of recurrence relations naturally emerging in configuration space for the calculation of special series of integrals of the sunrise topology. We finally report on results for the computation of an extension of the basic sunrise topology, namely the spectacle topology and the topology with an irreducible loop addition.
منابع مشابه
Lectures on configuration space methods for sunrise-type diagrams
In this lecture series I will give a fundamental insight into configuration space techniques which are of help to calculate a broad class of Feynman diagrams, the sunrisetype diagrams. Applications are shown along with basic concepts and techniques.
متن کاملOn the dual of certain locally convex function spaces
In this paper, we first introduce some function spaces, with certain locally convex topologies, closely related to the space of real-valued continuous functions on $X$, where $X$ is a $C$-distinguished topological space. Then, we show that their dual spaces can be identified in a natural way with certain spaces of Radon measures.
متن کاملLaurent Series Expansion of Sunrise-type Diagrams Using Configuration Space Techniques *
We show that configuration space techniques can be used to efficiently calculate the complete Laurent series ε-expansion of sunrise-type diagrams to any loop order in D-dimensional space-time for any external momentum and for arbitrary mass configurations. For negative powers of ε the results are obtained in analytical form. For positive powers of ε including the finite ε 0 contribution the res...
متن کاملSchouten identities for Feynman graph amplitudes; The Master Integrals for the two-loop massive sunrise graph
A new class of identities for Feynman graph amplitudes, dubbed Schouten identities, valid at fixed integer value of the dimension d is proposed. The identities are then used in the case of the two-loop sunrise graph with arbitrary masses for recovering the second-order differential equation for the scalar amplitude in d=2 dimensions, as well as a chained set of equations for all the coefficient...
متن کاملOperator approach to analytical evaluation of Feynman diagrams
The operator approach to analytical evaluation of multi-loop Feynman diagrams is proposed. We show that the known analytical methods of evaluation of massless Feynman integrals, such as the integration by parts method and the method of ”uniqueness” (which is based on the star-triangle relation), can be drastically simplified by using this operator approach. To demonstrate the advantages of the ...
متن کامل